
fo
rm
_s
cr
ip
t.
wo
rk
sh
op

010610 netlogo.CA

021310 netlogo.agents

2010 netlogo.react_diffuse 03

2710 analogue computing 04

0311 adaptive machine 05

1011 vba.line_walk 06

1711 vba.procedural 07

082411 vba.control_structures

0112 vba.loops_II 09

0812 vba.debug+forms 10

1201 vba.select+collect 11

set and populate it with objects from the draw-
ing database.
You must now chose between 4 methods of selec-
tion, of which we regularly use two:

 ss.Select and ss.SelectbyPolygon

Each methods requires given parameters as argu-
ments that define the selection mode. The gen-
eral .Select method has 5 modes of filtering for
data. In our little programme we use the ac-
SelectionSetAll mode, which can be given some
filtering parameters (none of them has to be
used). We use the third (group code) and fourth
(type code):

 ss.Select acSelectionSetAll, , , gp, dv

ss.Select means we generally select objects,
using no auxiliary methods like a boundary (Se-
lectByPolygon) or interactively picking (Selec-
tOnScreen). If one specifies the mode - here ac-
SelectionSetAll - some arguments must be passed
to say what to look for. gp is an array of
integers with only one element that indicates
what general family of objects we are looking
for.

 Dim gp(0) As Integer

 gp(0) = 8

gp stands for group-code. group codes are coded
as DXF codes and indicate to the assembler what
kind of object should be looked for in the da-
tabase. A range of DXF group-codes are

 0 entity type
 2 object name
 5 handle
 8 layer
 10 startpoints/ endpoints
 62 colour

Welcome back everybody and we wish you lots of
energy and reflection this year for your master!

Before Xmas we gave you a little task to look
into and figure out by today. The task wasn’t
easy. On top of that, I discovered quite late
that one important method to store and retrieve
objects has not been explained yet. I am sure
it is possible to find it out by yourselves but
also hard to get your head around. So, this
hand-out shows two methods of collecting ob-
ject data and accessing it at a later stage for
maniputation. The little programme for today
includes both methods: selection sets and array
storage.

Selection Sets (well described in the Help files)

In AutoCad there are two different ways of col-
lecting objects - into collections and into se-
lection sets. Today we will look at the selec-
tion sets since they are the everyday method to
handle collections of objects.
As the name suggests, a selection set is a set
of specified objects that you selected. Hence,
it is obvious that there should be modes of
selecting objects from the drawing. In other
words there are various ways of filtering the
drawing for objects.
Before one can select anything from the drawing
and store that selection into a set, one must
declare and dimension a selection set like any
other variable:

 Dim ss As AcadSelectionSet

After declaring it, as usual it has to be in-
stantiated into the drawing database with its
name:

 Set ss = ThisDrawing.SelectionSets.add(“it”)

Now you would be ready to use the selection

fo
rm
_s
cr
ip
t.
wo
rk
sh
op

010610 netlogo.CA

021310 netlogo.agents

2010 netlogo.react_diffuse 03

2710 analogue computing 04

0311 adaptive machine 05

1011 vba.line_walk 06

1711 vba.procedural 07

082411 vba.control_structures

0112 vba.loops_II 09

0812 vba.debug+forms 10

1201 vba.select+collect 11

Within the group, one has to specify the exact
description of the type of objects to be se-
lected. One does that with the data-value dv().
Even the data-value must be declared as an ar-
ray of variants. Variants because it could be
any type of data, in our example the name of
the layer we would like to select from:

 Dim dv(0) As Variant
 dv(0) = name

The value of the data must be absolutely pre-
cise otherwise it won’t select the right ob-
jects. We select object from a layer. The layer
name is easy because we specified it ourselves.
But say, we are filtering for circles in the
drawing. Then one has to define the group-code
to be
 gp(0) = 0

 dv(0) = CIRCLE

In order to find the right description, you can
create an object manually on screen, select it
and type list on the command line. That will
give you the exact name of the object.

It seems tempting to filter for more than one
group and type in the arrays but unfortunate-
ly AutoCad never fixed that bug so far and it
doesn’t work yet - so don’t even try!

So now we have filtered through all object on a
layer called whatever is stored as a string in
the variable name.
Since the purpose of the sub-procedure
wipe_layer() is to erase all objects found on a
given layer, we have to iterate through the se-
lection set and erase one by one:

 For i = 0 To ss.count - 1
 ss.Item(i).Delete

 Next i

If the selection set has collected any objects,

its Count should me higher than 0. Infact, if
there are no objects in the set, the count will
be <empty>.
To access the objects, we use the Item(index)
property that is also valid for other types of
collections. All one needs to do is to loop
through as many objects there are in the set
and access them via the Item() property, and
finally indicate what to do with it. We want to
delete the items, so we chose the method .De-
lete of the Item() object.

Eventually, to clear up the memory used for the
selection set, we delete it after having fin-
ished:

 ss.Delete

You could also use the selection set to re-
trieve the circles and manipulate them. In or-
der to do so, you have to extract and instanti-
ate the circle:

 set a_circle = ss.Item(i)

That way you can investigate and use the cir-
cle, manipulate it and delete it again.

As you can see in the friends sub-procedure,
sel_set_del, you can ask the drawing how many
selection sets there are by using the .Count
property again:

 ThisDrawing.SelectionSets.count

We do sel_set_del first because if any selec-
tion set of the same name existed already in
the drawing, you get a run-time error. Thus, we
collect all the selection sets in the drawing
and delete them:

 If (ThisDrawing.SelectionSets.count > 0) Then
 ThisDrawing.SelectionSets.Item(0).Delete
 End If

fo
rm
_s
cr
ip
t.
wo
rk
sh
op

010610 netlogo.CA

021310 netlogo.agents

2010 netlogo.react_diffuse 03

2710 analogue computing 04

0311 adaptive machine 05

1011 vba.line_walk 06

1711 vba.procedural 07

082411 vba.control_structures

0112 vba.loops_II 09

0812 vba.debug+forms 10

1201 vba.select+collect 11

ObjectID & ObjectIDToObject properties

Another method of collection any kind of object
in a light and minimal fashion, is to store the
identification numbers that AutoCad attributes
to drawing objects. It is a very light and
practical method, because one can determine the
order in which objects are stored and we don’t
store all details about the object but just
their identification numbers. When later, for
the CA for example, one wanted to store and ac-
cess objects in an orderly fashion, it becomes
almost impossible with a selection set, since a
two dimensional or three dimensional order be-
comes more feasable.
So, how to get that identification, store it and
get it out later again. Consider out example of
the circles in an orthogonal grid. Each circle
we draw should be stored directly in an array:

 nodes(count) = ball.ObjectID

That’s how easy it is to access the object
identification number. Notice two things - first-
ly, ball must be an AutoCad object and Set; and
secondly, the ObjectID property is of data type
Long. That means that your array nodes() must
be dimensioned as:

 Dim nodes() As Long

The data type Long occupies 4 bytes of memory
and therefore can contain much larger numbers
than an integer. The identification numbers of
objects are greater than an integer.
Now that you have stored all the object numbers
in an array, you can at a later stage retrieve
the whole object again with all its data (as
the Romans proverb goes: ‘pars pro toto’, mean-
ing one little part describes the whole). To
retrieve the object one has to use the
ObjectIdToObject() method, which is subject to
the drawing, not necessarily to modelspace. But

beware, the return type is an object in our
case and therefore, the drawing object needs to
be Set again:

 Set obj = ThisDrawing.ObjectIdToObject(ObjectID)

The ObjectID in brackets is one of the Longs
that we have stored in the array nodes().
Therefore, we could retrieve one of those ob-
jects by asking for say the second circle:

 Set winner = ThisDrawing.ObjectIdToObject(nodes(2))

Winner has to be declared as an AcadCircle
first:

 Dim winner As AcadCircle

Now, you have retrieved the original second
circle and can access all its methods and prop-
erties. In our little programme we scale it and
take out the next circle.

... and finally some (bubble) sorting:

