
f
o
r
m
_
s
c
r
i
p
t
.
s
e
s
s
i
o
n
s

011210 netlogo.CA

021910 netlogo.agents

032610 netlogo.react_diffuse

040911 vba.introduction

1611 vba.variables 05

2311 vba.fl ow_control 06

3011 vba.nested_structures 07

0612 vba.feedback 08

1101 vba.selection_sets

1801 vba.CA_2D

09

10

2501 vba.CA_universe 11

Pseudo Infi nity

On last weeks hand-out, I was mentioning the
three different methods to describe the edge of
the universe for the CA. For this week the task
was to alter the state of the universe from the
limited to the pseudo infi nite.
Last week’s code scripted the universe to be a
ring of dead cells around the edge, so that the
cells would not ‘fall of the edge’ and generate
a Run Time Error called Subscript out of Range,
meaning that a loop addressed an array index
that doesn’t exist.

The pseudo infi nite universe metaphorically
stitches the right edge of the CA to its left,
the top to the bottom and the deep to the shal-
low (see fi gure above). In two dimensions we
can imagine a torus or donut; whereas in three
dimesions we can’t quite imagine the resulting
morphology.

Through this operation we will be able to use
all cells of the CA again, as opposed to the
previous method whereby we could address only
the cells removed by one index position from
the edge. Therefore, you have to adjust all ar-
ray dimensions and loop indeces to the same
range. Instead of:

 For i = 1 To row -1
 For j = 1 To col-1
 For l = 1 To level-1

as before, you have to loop the complete array:

 For i = 0 To row
 For j = 0 To col
 For l = 0 To level

Having dimensioned all arrays and loops to the
same range,

 ReDim grid(row, col, level) As cell

 ReDim limbo(row, col, level) As Integer

pseudo infi nity: toroidal universe

f
o
r
m
_
s
c
r
i
p
t
.
s
e
s
s
i
o
n
s

011210 netlogo.CA

021910 netlogo.agents

032610 netlogo.react_diffuse

040911 vba.introduction

1611 vba.variables 05

2311 vba.fl ow_control 06

3011 vba.nested_structures 07

0612 vba.feedback 08

1101 vba.selection_sets

1801 vba.CA_2D

09

10

2501 vba.CA_universe 11

dimension, i.e. j < col, the substitute vari-
able will be set to the maximum dimension and
thus considers the neighbour cell at the top/
right edge.

Exit

Exit is a function that lets you ‘exit’ a sub-
procedure, function, or any control statement,
like a loop or a conditional. You will have to
specify after the call to Exit what you want to
get out of. So, in our example of the CA we
want to exit an entire sub-procedure since we
are really only looking for one element in the
array. If we found it we don’t want to look
through the rest:

 Sub newstate(...)
 For i = 1 To row
 For j = 1 To col
 If (id = grid(i, j).id) Then
 ...
 Exit Sub
 End If
 Next j
 Next i
 End Sub

We could of course also exit either the For
Loop or the If statement; but then we would
have to specify that accordingly after the
‘Exit’!

we have to tell the program in the function
counthem() where the edge occurs and where to
search the next neighbour if the edge of the
array has been reached. The extract below shows
the scripting method to adjust to the wrapped
edge. These lines need to be placed between the
loops in counthem(), which look in the immedi-
ate topological neighbours for their state:

 ii = i
 If (i > row) Then ii = 0
 If (i < 0) Then ii = row

 jj = j
 If (j > col) Then jj = 0
 If (j < 0) Then jj = col

 ll = l
 If (l > level) Then ll = 0
 If (l < 0) Then ll = level

 neighs = neighs + grid(ii, jj, ll).state

The variables ii, jj and ll are new function
internal variables that serve as a substitute
for the loop indeces i, j and l. Thus, we don’t
have to manipulate the indeces directly, which
would lead to messing up the loops . You can
see from the example above that in general the
substitute variables take the value of the loop
indeces. Only in the exceptional cases of de-
tecting an index that doesn’t exist in the ar-
ray constituting the CA, will the loop index be
replaced with either the highest value of the
specifi c dimension of the array - that is ei-
ther the maximum row value (1-dim), the maximum
column value (2-dim) and/ or the maximum depth
value (3-dim) - or with the lowest value of the
specifi c dimension, which is 0 in all three di-
mensions.

If the loop index grows bigger than the array
dimension, i.e. i > row, the substitute vari-
able will be set to the minimum and thus con-
siders the neighbour cell at the bottom/ left
edge. If the loop index falls below the array

f
o
r
m
_
s
c
r
i
p
t
.
s
e
s
s
i
o
n
s

011210 netlogo.CA

021910 netlogo.agents

032610 netlogo.react_diffuse

040911 vba.introduction

1611 vba.variables 05

2311 vba.fl ow_control 06

3011 vba.nested_structures 07

0612 vba.feedback 08

1101 vba.selection_sets

1801 vba.CA_2D

09

10

2501 vba.CA_universe 11

Coates, Healy & Lamb, 1997

Derix, 2004

moss growth

Mexico City sprawl

