
f
o
r
m
_
s
c
r
i
p
t
.
s
e
s
s
i
o
n
s

011210 netlogo.CA

021910 netlogo.agents

032610 netlogo.react_diffuse

040911 vba.introduction

1611 vba.variables 05

2311 vba.fl ow_control 06

Thus, you will have full access to all elements
of the array. Remember that the name of the ar-
gument can change when received!

You can also just send one element of an array
as an argument to a sub procedure or function:

 random there(2), 0, 25

In that case the receiving sub procedure or
function just declares a single variable with
its data type laid out in the dimensioning of
the array:

Sub random(height As Double, low As Double, top as double)

Again the name of the argument/ variable has
been changed.
You can access the elements of the array in any
index order you like. In other words it doesn’t
have to be sequentially or from the start. And
an array can have as many elements as you like
as long as there is enough memory. Just make
sure that you never try to access an element
index that doesn’t exist, like there(3). That
would give you a Run-time error (Out of range!).
It returns an error that is discovered by the
compiler only when the program runs, because
syntactically the code is correct. When a syn-
tax error occurs, the compiler will tell you
already when compiling. The error with there(3)
occurs at run-time because the point there is
dimensioned from 0 to 2 (2), not (3).

CONTROL STRUCTURES

As we have already mentioned on the last hand-
out, a procedural program has a hierarchical
structure with the main procedure, outsourced
sub-procedures that handle tasks and functions
that serve for specifi c calculations. Control
statements help to determine the sequence of
execution based on conditions.

Last weeks program contains some fi rst syntax
apart from procedure and data. As part of the
data structure, we used an array to hold the
three components of the three dimensional coor-
dinates here and there.
To propagate the segments of the line se-
quentially, we used the loop control state-
ment. Hence on this hand-out we will introduce
the one-dimensional array and the two control
statements For - Next Loop and If - Else.

Arrays (one dimensional)

You might have asked yourself what kind of con-
struct the

 Dim here(2) As Double

 Dim there(2) As Double represents?

In Basic, just like in any other programming
language, one can dimension any data type to
be a set of sequentially indexed elements - an
array. That means the elements occur in a hier-
archical order from, say 0 to 2 in the points
example of our line_walk code. there(0) is the
fi rst element that represent the X-axis compo-
nent of the point, there(1) the Y-axis compo-
nent and there(2) the Z-axis component.
Notice that all elements will always be of the
data type the array was dimensioned to. If you
want to send the complete array to another sub
procedure or function you just call the the sub
procedure or function with the array name as an
argument:

 random there,0, 25

The sub procedure or function that receives the
array as an argument will have to declare it
then with brackets again:

Sub random(endpt() as double, low As Double, top As double)

f
o
r
m
_
s
c
r
i
p
t
.
s
e
s
s
i
o
n
s

011210 netlogo.CA

021910 netlogo.agents

032610 netlogo.react_diffuse

040911 vba.introduction

1611 vba.variables 05

2311 vba.fl ow_control 06

Control structures come in two fl avours:

 - looping statements
 - conditional statements

Loops

Loops are a mechanism to repeat blocks of code
as in the walk_line program:

 For i = 0 To 50
 here = there
 there = random()
 Set walker = ...AddLine(here, there)

 Next i

There are different types of loops (Do... Loop
While(), While()...Wendt) of which we will
concentrate on the enumerative one, in other
words the one like in our program where you re-
peat something a set number of times (here 50
times).
You always need a counter variable! Most of-
ten the counter variable is called i, stand-
ing for the i(ndex) of the loop. This variable
is mostly of data type integer. This means that
you should dimension the counter variable be-
fore you want to start a loop. The loop index
or counter is increased (or decreased) between
a lower and an upper limit - 0 and 50 in this
code. The increase (or decrease) occurs lin-
early at the Next i statement. The upper limit
indicates how many times to go around the loop
(here 50 times).

The counter variable will be increased by 1 or
decreased by 1 depending on how you set the
limits for the loop. To make it very explicit
one can also describe the increase/ decrease as

 i = i +/- 1
 (so if i = 0, then 0 = 0 + 1, making i = 1)

A football team and its positions can be demon-
strated to be an array:

 Dim Team(1 to 11) as String

 Team(1) = “Coates”
 Team(2) = “Thum”
 Team(3) = “Carranza”
 Team(4) = “Derix”
 Team(5) = ““
 ...
 Team(11) =”Rich”

where the positions are fi lled in by the players’
names. Next week’s game can see some changes in
players for the same positions:

 Team(2) = “Derix”
 Team(4) = “Insull”

As in real arrays, indices won’t change but their
values can.

f
o
r
m
_
s
c
r
i
p
t
.
s
e
s
s
i
o
n
s

011210 netlogo.CA

021910 netlogo.agents

032610 netlogo.react_diffuse

040911 vba.introduction

1611 vba.variables 05

2311 vba.fl ow_control 06

which stands for the Next i statement.
The counter variable i will increase or de-
crease by 1 from the lower limit you set the
loop out to the upper limit. Once the
counter variable has reached the upper limit
then it will stop executing the loop and con-
tinue below the loop with the rest
of the code.
You can also jump the indices of the loop coun-
ter by adding a Step keyword at the end of the
upper limit defi nition:

 For i = 0 to 10 Step 2
 ...
 Next i

will count only 0, 2, 4, 6, 8, 10.

A loop can be exited before the counter vari-
able reaches it upper limit with an Exit For
statement, which is generally placed in a con-
ditional statement.

Conditional Statements

We already saw conditional statements in Net-
Logo. There they were simple called If...[] or
IfElse...[][].
In VBA, as many other language, the condition-
al statement is more explicit and can have two
different types of which we will look at the
more basic one today:

 If(expression) Then statement execution

One could say: ‘If the weather is fi ne, I will
go to the sea.’ Written in VBA that would be:

 If (weather = 1) Then gotosea

or

Victoria & Albert Museum Extension by Daniel Liebes-
kind (simplifi ed algorithm):

 For i = 0 to 3

 center.z = center.z + random(5,10)
 add.box center
 box.rotate3D

 Next i

Remember the Tofu...

f
o
r
m
_
s
c
r
i
p
t
.
s
e
s
s
i
o
n
s

011210 netlogo.CA

021910 netlogo.agents

032610 netlogo.react_diffuse

040911 vba.introduction

1611 vba.variables 05

2311 vba.fl ow_control 06

 If (weather = 1) Then
 gotosea
 End If

If...Then or If...Then...End If is the fi xed
syntax by VBA. (weather = 1) is the expression
evaluated for executing the statement following
the consequential keyword then. The ‘=’ is the
comparison operator. There can be any compari-
son operator depending on what you want to ex-
press. ‘gotosea’ is just the code or statement
that will be executed if the expression evalu-
ates to being TRUE. Conditional statements can
only evaluate to TRUE of FALSE.
If the statement to be executed, like gotosea,
is only one line long, the whole conditional
statement can be written on one line as in the
fi rst example. The second example shows
how it would be written are more statements to
be executed.

For example, if one would say: ‘If the weather
is fi ne, I will go to the sea and eat and gam-
ble.’ then the code in VBA would look like
that:

 If (weather = 1) Then
 gotosea
 gamble
 End if

If one would say: ‘If the weather is fi ne, I
will go to the sea and gamble otherwise I will
watch tele.’ then the code gets an ‘alternative
keyword’ Else added:

 If (weather = 1) Then
 gotosea
 gamble
 Else
 watchTele
 End If

One can also check a second expression in case
the fi rst didn’t evaluate to be true. In that

case an ElseIf(condition) statement is added.
Say:’ If the weather is fi ne I will go to the
sea and gamble. If the weather is ok I will
go shopping. Otherwise I will just watch tele.’
 If (weather = 1) Then
 gotosea
 gamble
 ElseIf (weather = 2) Then
 shopping
 Else
 watchTele
 End If

Now the expression can evaluate to three dif-
ferent cases:
fi ne(1), ok(2) or anything else apart from 1 or
2.

One can also use the IIf function to assign a
value to a variable evaluated through a condi-
tion. Instead of writing:

 If (weather = 1) Then
 gotosea
 Else
 watchTele
 End If

 what_to_do = IIf(weather = 1, gotosea, watchTele)

‘what_to_do’ is the return variable that gets
either the true-part value or the false-part
value, depending on the evaluation of the ex-
pression. The return variable needs to be di-
mensioned fi rst.

 variable = IIf(expression, true-part, false-part)

Later we will also take a look at multiple
evaluation statements, called Select Case.

f
o
r
m
_
s
c
r
i
p
t
.
s
e
s
s
i
o
n
s

011210 netlogo.CA

021910 netlogo.agents

032610 netlogo.react_diffuse

040911 vba.introduction

1611 vba.variables 05

2311 vba.fl ow_control 06

Computational Sketching

Today, we will experiment with ‘live’ writing
algorithms that will change the quality of the
line walk.

Intially, we will change the way the points of
the line can be arranged.

Then, by projecting a clone of the fi rst line
outwards, a series of planes can be derived
that start to look like architectural features.
Thus, from a one-dimensional description a two
dimensional representation can be arrived at.

Task

Everybody must experiment with other projec-
tions of the lines into a volumetric represen-
tation.

Keep it simple and try to use variations of the
fi rst lines only.

left: an experiment by a Viennese student to use lines and
surfaces only to generate volumentric compositions

