
f
o
r
m
_
s
c
r
i
p
t
.
s
e
s
s
i
o
n
s

011210 netlogo.CA

021910 netlogo.agents

032610 netlogo.react_diffuse

040911 vba.introduction

1611 vba.variables 05

2311 vba.fl ow_control 06

3011 vba.nested_structures 07

0612 vba.feedback 08

1101 vba.selection_sets

1801 vba.CA_2D

09

10

Cellular Automaton - Game of Life

In 1970 the mathematician John Conway intro-
duced through the Scientifi c American a mathe-
matical game based on the cellular automaton of
John von Neumann, that would change the course
of artifi cial intelligence.
The game consists of one type of element only
(in NetLogo a patch with only two states) and
three very simple rules, which defi ne the state
of an element in relation to their eight neigh-
bours (we are going to explore those rules with
you during the workshop).
The result of those local rules hinted at a
concept by von Neumann called the universal
constructor - machine made of any kind of stuff
that would be able to compute any state, if
morphological, behavioural, economical etc.
Even more daring was the hypothesis that this
universal constructor might also generate
states or patterns that could reproduce
themselves - a phenomenon only attributed to
living systems.
The Game of Life, so called by its inventor,
although not made of any particulare stuff at
all, but relations between virtual patches man-
ages to generate an infi nite range of patterns
that are not predictable unless one executes an
initial constellation of patches. Furthermore,
patterns have been discovered - i.e. the R-
pentomino or glider - that would after several
cycles return their own pattern. Thus, specula-
tions about the universal constructor were re-
born.

The Cellular Automaton (CA) we are looking at
today is essentially exactly the same in VBA
as the one we looked at within NetLogo. Again
we will be looking at the Game of Life by John
Conway in order to demonstrate the characteris-
tics of a CA.

generation t : present

future state : limbo

generation t+1 : present

transition function

f
o
r
m
_
s
c
r
i
p
t
.
s
e
s
s
i
o
n
s

011210 netlogo.CA

021910 netlogo.agents

032610 netlogo.react_diffuse

040911 vba.introduction

1611 vba.variables 05

2311 vba.fl ow_control 06

3011 vba.nested_structures 07

0612 vba.feedback 08

1101 vba.selection_sets

1801 vba.CA_2D

09

10

All calculations for a CA that is fi xed on a
orthogonal grid are topological, since other
Euclidean qualities like distance, volume, sur-
face are neglectible. Once a CA runs off the
grid, like a voronoi diagram, geometric fea-
tures can be taken into account. Thus, topog-
raphy as well as topology form the basis for
calculations.

In the example given below, topographically
speaking, vertex A looks closer in distance to
vertex C, making C geometrically the neighbour
of A.
But topologically speaking, according to the
structure of the surface mesh, vertex B is the
closest neighbour to vertex A as well as C.

‘Limbo-World’

The salient difference between the NetLogo and
the VBA code is the explicity with which the
VBA code is written. In NetLogo ideas and con-
cepts like the ‘meta-world’ or ‘limbo-world’
are taken for granted and don’t show, just as
loops didn’t show up.
To refresh your memory: the ‘limbo-world’ is a
parallel array which stores the observations of
the present situation without translating them
during the observation process. Thus, the
future state of the automaton is stored in
a parallel matrix of cells which refl ect the
present relationships between the cells.
When all the present relationships have been
evaluated and strored in the ‘limbo-world’, the
‘present world’ is swapped with the ‘limbo-
world’, making the ‘present’ the ‘limbo’
world and vice versa.
This delaying of translation of a reading of a
situation helps to circumvent the problem of
the lack of real parallel computation . Since
computers can only evaluate sequentially, the
‘real’ picture of the CA would be distorted if
each cell would be updated right after it had
been evaluated. The delaying of the updating
and the reading of a situation in a quasi-fro-
zen state ensures a fake simultaneity!

Topology vs Topography

When one is talking about explicit visual qual-
ities of a space or surface desribed through
geometric semiology, one generally refers to a
topography - the description of the appearance
of a form.
On the other hand, when one is trying to de-
scribe an implicit, generally non-visible
structure of a space, surface or geometry, one
generally refers to a topology - the descrip-
tion of the structure of a form.

A

B

C

f
o
r
m
_
s
c
r
i
p
t
.
s
e
s
s
i
o
n
s

011210 netlogo.CA

021910 netlogo.agents

032610 netlogo.react_diffuse

040911 vba.introduction

1611 vba.variables 05

2311 vba.fl ow_control 06

3011 vba.nested_structures 07

0612 vba.feedback 08

1101 vba.selection_sets

1801 vba.CA_2D

09

10

Neighbour Count

In the function counthem(), we count up the
states of all the topologically neighbouring
cells from the perspective of one single cell
at a time. There are two differenct types of
neighbourhoods as shown in the diagram on the
left.
In order to count up the immediate topological
neighbours, we need to loop through the two or
three dimensional array that contains all the
cells and collect the necessary information.
Any given cell has an array index position. In
2d for example:
 grid(i, j)

Topologically, the neighbours are the ones
which are exactly one in array index away from
the given cell in either direction, (i-1) to
(i+1) and (j-1) to (j+1). In the code that is
expressed through the nested loops

 For i = rowpos - 1 To rowpos + 1
 For j = colpos - 1 To colpos + 1
 neighs = neighs + grid(i, j).state
 next j
 next i

Below you will fi nd a diagram of the array ind-
eces:

Moore neighbourhood

van Neumann neighbourhood array indeces in van Neumann neighbourhood

f
o
r
m
_
s
c
r
i
p
t
.
s
e
s
s
i
o
n
s

011210 netlogo.CA

021910 netlogo.agents

032610 netlogo.react_diffuse

040911 vba.introduction

1611 vba.variables 05

2311 vba.fl ow_control 06

3011 vba.nested_structures 07

0612 vba.feedback 08

1101 vba.selection_sets

1801 vba.CA_2D

09

10

When we have counted all the states of all the
cells around a given cell (ME in the diagram
above) and added them up, we still have to sub-
ract our own state from the sum:

 counthem = neighs - grid(rowpos, colpos, levelpos).state

Now the function counthem() returns the sum
of all the state values from the topological
neighbourhood of a given cell to the sub proce-
dure iterate(). In iterate() follow the transi-
tion rules that emulate the logic of the life
game discussed in NetLogo.

Edge Condition

What happens if a cell is at the edge of the
automaton and needs to calculate a neighbour
that doesn’t exist? There are three common so-
lutions to that problem:

1 > test the array location of the cell be-
fore calculation and tell it explicitly not to
search in certain non-existing neighbourhood
array positions. Rigorous but complicated solu-
tion.
2 >create a ring of dead cells around the au-
tomaton, whose state can be interrogated but
which never count their neighbours themselves
3 > wrap the right edge to the left and the top
edge to the bottom, thus creating a seemingly
infi nite universe.

Today we introduce solution 2 where we set up
one more row of cells on either edge in Y and
one more column on either side in X. See the
diagram opposite:

In the sample code we seed all cells from 0 to
COL+1 and ROW+1 as dead cells initially:

 For i = 0 To row + 1
 For j = 0 To col + 1
 grid(i, j).state = dead
 limbo(i, j) = dead
 Next j
 Next i

Whereas, when we loop through the array posi-
tions in the sub procedure iterate(), we only
loop from 1 to COL and ROW:

 For i = 1 To row
 For j = 1 To col
 ...
 next j
 next i

Thus, we make sure that we don’t jump over the
edge and get a Run-Time Error: Out of Range.

