
f
o
r
m
_
s
c
r
i
p
t
.
s
e
s
s
i
o
n
s

011210 netlogo.CA

021910 netlogo.agents

032610 netlogo.react_diffuse

040911 vba.introduction

1611 vba.variables 05

Procedural

VBA is a fundamentally a procedural language
as discussed last week. The difference between
procedural and object oriented (OOPS) manifests
itself through the flow of writing. Procedural
is written from top to bottom in one sequence,
whereas OOPS doesn’t ‘look’ like a sequence but
is dependent on events within objects. Thus,
the OOPS code seems non-linear as opposed to
procedural.

On the surface, AutoCad is also compiled into
objects that one can address. It is the VBA
code you write, which interfaces with ACAD
ojects that is procedural. Each object has
properties, a data-structure, and methods, pro-
cedures to manipulate the data. In OOPS these
two categories are aggregated into one unit
- on object - that can be cloned, like parents
and their offspring. In procedural on the other
hand, one specifies the data-structure and the
methods independently, and rolls them into a
calling sequence.

Today we will take a closer look at the syn-
tax of the VBA procedural environment. First
explaining what type of variables we generally
use in common data-structures and then the dif-
ferent method types - sub-procedures and func-
tions. The essence of procedural lies within
the passing of data between the methods - from
main-procedure to sub-procedures - where it
gets manipulated. In that context, one talks
of the scope of a variable. An obvious analogy
to the syntax of programs is language itself,
where the data-structure are the scope of words
like nouns, adjectives and verbs, and the pro-
cedures are the grammatical manipulations of
those words.

f
o
r
m
_
s
c
r
i
p
t
.
s
e
s
s
i
o
n
s

011210 netlogo.CA

021910 netlogo.agents

032610 netlogo.react_diffuse

040911 vba.introduction

1611 vba.variables 05

(Data) Types

A program generally (generally, because as Paul
points out in his new book that AutoLisp manag-
es to disolve the distinction between data and
procedure) consists of an algorithm or proce-
dure and data. If the concept of the algorithm
is clear then the data structure has to be de-
termined.

There are several types of data. A type deter-
mines three things: - how much memory to at-
tribute to the data, how to decode it and where
it can be applied - its scope (globally or lo-
cally, fixed or dynamic).
The most commonly used data types for us are

 integer (2 bytes) %
 double (2 bytes) #
 long (4 bytes) &
 string (63 bytes) $
 variant (16/ 22 bytes)

The data types above as you can see have a
quantity of memory allocated to them. That
means when you use a data type to dimension a
variable, you reserve memory for that variable
of a certain type. The variant type is a ‘to-
ken’ that is used if a variable has not been
clearly defined yet. It can take any type defini-
tion for a variable later in the program.
The symbols you see behind the types are short-
cuts, meaning that if you want to quickly use a
variable that shows up once only as a helper to
a calculation for example, you can use the
symbol at the moment the variable appears in
the program, not having to define the variable
at the beginning of the procedure.

f
o
r
m
_
s
c
r
i
p
t
.
s
e
s
s
i
o
n
s

011210 netlogo.CA

021910 netlogo.agents

032610 netlogo.react_diffuse

040911 vba.introduction

1611 vba.variables 05

Variables

Variables are as the name suggests data that
can change over the course of the execution
of the program - variable data. They are also
named storage locations. As shown above, a
program needs to have some data and an al-
gorithm to do any work. A data type contains
a certain amount of memory and scope. Now,
we can give that memory location a name. The
name can be arbitrary, as long as it doesn’t
coincide with some word that is being used
by the program as a predefined structure. The
naming and scoping of a variable is done like
this:

 Dim variable-name As type

The expression Dim and As are fixed part of
the syntax. The variable-name could be any
and the type any of the types that are list-
ed above (and others actually). However, you
want to make sure you try to use the right
type for the variable, since otherwise one
sends the variables around with a load of
extra memory or too little memory. There are
example codes you will find that state at the
beginning of the module Open Explicit, which
indicates that all the variables have to be
dimensioned explicitly and rigorously.

Inside any application that is linked to VBA,
like AutoCad or Microstation, there are a lot
of application specific types that are con-
strued out of the basic data types. An Auto-
Cad object for expample has its own type as
the line-object is of type AcadLine. So you
could give a line that is to be drawn a name
and its type like this:

 Dim myline As AcadLine

This dimensions not just the memory location
but a large field of memory which reserves also
space for further definitions of the object/
class line. ‘myline’ is in other words an in-
stance of the AcadLine class.
Variables’ life-span last only for the duration
of the execution of the program. Afterwards,
the memory gets cleared out again.

In addition, you can also create your own
types. If you were to use a certain combination
of variables (different of the same) a lot that
make up a single entity then you could construe
that entity yourself made of various basic
types. Instead of the normal definition of a 3D
point in AutoCad as

 Dim point(2) As double

with its initialization as

 point(0) = 0#: point(1) = 0#: point(2) = 0#

you could make it more elegant by defining the
point first as

 Type point
 Dim x As double
 Dim y As double
 Dim z As double
 End Type

 Dim here As point

with its initialization as

 here.x = 0#
 here.y = 0#
 here.z = 0#

Reads easier and makes it clearer in the pro-
gram the longer it goes on.

f
o
r
m
_
s
c
r
i
p
t
.
s
e
s
s
i
o
n
s

011210 netlogo.CA

021910 netlogo.agents

032610 netlogo.react_diffuse

040911 vba.introduction

1611 vba.variables 05

Procedural Methods

As already shown on last week’s hand-out, an
object consists of Properties, Methods and
Events. The Properties define qualities of the
object, Methods define manipulation of the ob-
jects data and an Event is a special case de-
fined to execute only if a defined change of the
object occurs.
Having looked briefly at data definitions that
are used to define properties, we will now look
at methods.
Methods come in two flavours:

 - sub-procedures
 - functions

The name sub-procedure hints at its role in
the hierarchy within the program: it serves
the main-procedure, and is usually called from
there as well. The main-procedure is the over-
arching sequence that decides the linear ex-
ecution of the program. Sub-procedures are the
outsourced ‘limbs’ of the program. If every
computation of the algorithm was written out in
one long sequence, it would become less compre-
hensible. Thus, one reduces the complicatedness
by breaking the code up into chunks of compu-
tational tasks. When a sub-procedure, or for
that matter a function has finished computing,
it returns with the result to the procedure it
was called from. A nice analogy is to jump to a
footnote in a text and returning back to where
one left off.
The difference between sub-procedures and func-
tions is that sub-procedures can be send a
variety of data and types to be computed and
returned, whereas functions return exactly one
computed type of data, making them more limit-
ed. I will demonstrate that with the startpoint
example from last week:

f
o
r
m
_
s
c
r
i
p
t
.
s
e
s
s
i
o
n
s

011210 netlogo.CA

021910 netlogo.agents

032610 netlogo.react_diffuse

040911 vba.introduction

1611 vba.variables 05

One can see that instead of returning just one
value, the sub-procedure returns three values.

It might also seem strange that the argu-
ments in the call to the Function random() have
changed their name. Variables are only sent as
copies of themselves and can therefore change
their names between Sub Procedures or Func-
tions. The content remains the same, though as
a copy.

We could either ask a function to return a ran-
dom number as we did last week:

 there(0) = random(0, 25)
 there(1) = random(0, 25)
 there(2) = random(0, 25)
...

Function random(low As Double, up As Double) As Double

 random = (up - low) * Rnd + low

End Function

Notice that the single argument that is re-
turned needs to be assigned to some variable of
the same type. That is also why the Function
itself is dimensioned as type double. The name
of the function itself contains the value!

We can re-write this as a call to a sub-rou-
tine:

 random there, 0, 25
...

Sub random(ret_pt() as double, low as double, up as double)

 ret_pt(0) = (up - low) * Rnd + low
 ret_pt(1) = (up - low) * Rnd + low
 ret_pt(2) = (up - low) * Rnd + low

end Sub

The call to the sub-procedure random is effec-
tuated just by typing its name. After the name
a space is necessary before listing the argu-
ments for the sub-procedure to compute with,
here the point there, the lower limit (0) and
upper limit (25) for a random number. The order
of the argument list is important and should be
repeated exactly when the function or sub-pro-
cedure receives them. The function random gets
and receives two arguments (0,25), whereas the
sub-procedure random gets and receives three
arguments (there, 0 ,25)!

