1 2 3 4 5 6 1 8 9 10 11 12 13 ¥4 15 16 17 18 MoeSCI wednesday 14:30 - 18:00

tracks of hoofed animals in the Mesopotamian Lowland

topology of the cortex :: neurons and their synapses

Modifying Coordinates of Objects

It has been so far almost impossible to modify coordinates of
objects in AutoCad or Microstation, unless done in a crude
way. VBA gives the designer the chance to manipulate every
single vertex of an object independently and then update the
object - superb!

The new program tests one of two ways of modifying
vertices within the context of a polygonal mesh and shows
you where you can’t use coordinates to modify an object.
Also, there are three more syntactical goodies (boolean
variable type, select case statement and casting variables) and
one conceptual method for systems’ design (use-principle).

Coordinate(s)

The program generates a surface-mesh based on an array of
points and has a ball, which moves about in a separate plane,
determine through its x/y coordinates, how the mesh deforms
- a dynamic surface. You will quickly see how to make a
polygonal mesh in the main procedure dynasur():

Set meshObj =
ThisDrawing.ModelSpace.Add3DMesh(mSize, nSize, points)

You have to tell the mesh how many rows and columns it
will contain - mSize and nSize - and give the coordinates for
those points (totalpoints = mSize * nSize; totalcoordinates =
totalpoints * 3).

The longwinded nested loops to set up the points of the
mesh, that put the points into a vertices() array are a good
method to be able to control the structure of the mesh in a

.E"\ r\‘ -
k& y

rigorous fashion if needed (just for the future). That way, we
can work with the topology of the the mesh because no
matter what the coordinates of the points - if they are
neighbours or not - we can access the topological neighbours,
like a matrix. For our program now we only need the points()
array. But you also notice how the points() array doesn’t
differentiate coordinates that belong to the same point,
whereas the vertices() array does.

Having stuffed the points() array into the Add3DMesh()
method, you can see in the following line that you can
determine what kind of mesh you want to work with:

meshObj.lype = acBezierSurfaceMesh
meshobj.update

The points in one row or column of your mesh will define a
bezier curve now intstead of a polyline.This means that you
will get control points that rule the curve. There are four
different types of surface modes that you can chose (see help
files). Don’t forget to update the object after changing its

type!

A surface as a static entity is half as helpful as one that you
can change according to some contextual input. In order to
change the surface at a local scale, we can access its
coordinates - not its control points! There are two different
ways to access coordinates: a) by accessing one point with its
three components as a variant or b) by extracting all
coordinates and then modify one or more. Afterwards, you
can update the surface with the new coordinates. Accessing
coordinates is allowed for all entities apart from lines, arcs
and ellipses since they only really have two points to play



1 2 3 4 5 6 1 8 9 10 11 12 13 ¥4 15 16 17 18 MoeSCI

workshop
12.02 : Autof

with that you can access via object.startpoint and
object.endpoint:

line.StartPoint = pta
line.EndPoint = ptb
line.Update

Since the two points are specific properties of the object,
notice that you don’t have to move them like an
object.centroid, but simply do object.update afterwards.

Extracting all coordinates at once from an object via
object.coordinates can be helpful but is less transparent and
therefore more difficult to use. That’s why we use the
object.coordinate(index) method. The index indicates the
vertex number with all three components -x,y,z. Thus, you
can change the components separatly and replace the old
vertex. In the new program we do that in check():

verti = slave.Coordinate(i)

slave.Coordinate(i) = verti
slave.Update

We extract the vertex coordinates of the i-th index of the all
the points of the surface and place them temporarily into the
variant verti. Having modified the components of verti, we
replace the i-th points with verti again and update the
surface.

This method is valid also for solids. Thus, one could change
the coordinates of each of the 8 cube vertices separatly.

wednesday 14 :30 - 18:00

ntactical pleasures
Boolean Variable Type

In the last handout (29.01) we talked about flags. The most
basic flag is the TRUE or FALSE boolean expression. If you
only want to set a control variable to indicate if something is
TRUE or FALSE, you can declare the variable to be of
boolean type. In the dynsur() procedure we declare:

Dim outside As Boolean
Thus, outside can only become TRUE or FALSE. You can

ise TRUE and FALSE also as a numerical operator, where
FALSE = 0 and TRUE = -1.

“Casting Variables

If a variable has been declared of a certain type and you
would like or have to use it as a different type, you can cast
the variable to become another type. In the new program we
use the casting to change the type of the variable mSize:

roll ball, CVar(mSize)

has been declared a type integer in the dynsur()
procedure where it is also being used as such. In the roll()
sub-procedure however, we would like to use it as a double:

Sub roll(operator As Acad3DSolid, limit As Double)

We need the double because a coordinate can also have
decimals whereas the integer doesn’t. In order to compare
there(i) > limit
where there(i) is a coordinate as a double, we need to convert
mSize to a double before sending it to roll(). CVar() means
literally: Convert the expression in parentheses () to
Variant/Double.
You can convert any variable type to any other. If you
convert to a smaller type though, you will truncate
information! For example, if a is a double of value 3.5 and
you convert it to an integer by casting Clnt(a), the resulting
integer a will truncate the decimals and therefore read 3.

Two dimensional arrays

So far we have been using one dimensional arrays - a chest
with one column of drawers. Imagine you had a chest with

several columns of drawers, where each column has several
rows. That’s what we have in the declaration:

ReDim vertices(mSize, nSize) As vertex

mSize are the number of columns and nSize the number of
rows. That’s why we loop through this array with the nested
loop:

For m = 0 To mSize - 1
For n =0 To nSize - 1
vertices(m, n).coo(0) =m

It’s like a matrix where each address consists of a ‘m” and a
‘n’ component.



1 2 3 4 5 6 1 8 9 10 11 12 13 ¥4 15 16 17 18 MoeSCI

Select Case Statement

The Select Case statement does the same job as the Elself in
an If statement. But in a Select Case statement one only
compares one expression to a variety of values. In the sub-
procedure shoot() we use it to evaluate the variable war:

Select Case war

Case 0
this
Case 1
that
End Select

We could also write that statement as following:

If war = 0 then
this

Elself war = 1 then
that

End If

With the Select Case statement though, you can more
elegantly evaluate a variable when the variable has a large

range of values, say if you are going through a counter
variable or array indices.

Task

Anti-war march, Embankment - Hide Park, Saturday 15. Feb

wednesday 14 :30 - 18:00

Homunculus :: neural fields/ body-parts

“Pathways resist the flows of energy, unless it is used often. (...) In
st place the role of memory should be underscored. ‘Memory’
refers here to the physical condition of the brain: which pathways
are breached (‘facilitated’) and which are not. Memory is not a
cognitivetfunction performed by a conscious subject, but an
unconscious characteristic of the brain.” Paul Cilliers

Conceptual method

The dynamic surface mesh in the mesh-walk program
reflects through its shape the path the ball has been
travelling. The feedback the ball has on the surface increases
the z-coordinates of mesh points whose x/y coordinates are
within a specified radius in 2D to the ball’s x/y coordinates.
All mesh points that are not within that radius have their z
coordinate value reduced.

If (dis <= rad) Then

verti(2) = verti(2) + 0.6
Else

verti(2) = verti(2) - 0.05
End If

The more often a point is close to the ball (or rolled over) the
more salient the point and its surrounding becomes - we can
see that peaks of the map are more often used by the ball
than the troughs. When the Viennese psycho-analyst
Sigmund Freud tried to understand how memory works, he
believed that the more often a human being perceives or does
something, the more clearly it remembers. He was right;
neuroscientist later found that synapses connections between
neurons in the brain become stronger and afford ‘memory’
where they are being used more often. Others are slowly
weakened again because they get used for other ‘meanings’.
Freud called his idea the Use-principle, also Hebb’s rule.

If one records traces of people walking in a defined square
while it is snowing, one will find that the most used paths
will remain more trampeled whereas the ones not used very
often get snowed in again - bit like territorial memory.



