
f
o
r
m
_
s
c
r
i
p
t
.
s
e
s
s
i
o
n
s

011210 netlogo.CA

021910 netlogo.agents

032610 netlogo.react_diffuse

040911 vba.introduction

Why program at all?

Over the last two weeks we looked at mother na-
ture’s and a mechanical way of organizing ele-
ments within a systems through local feedback
to achieve a global phenomenon.
The soap-fi lm’s molecules, aka mother nature,
knew nothing of the overall shape that emerged
through that specifi c organization - when
we all went: oah nice, wow like a tent, etc.
Neither did the molecules know they were part
of the surface. All they knew was that about
their ‘personal’ relationship to their
surrounding’s. That relationship between each
other displaced them for which from our per-
spective beautiful surfaces were generated.
One of the key notions is that the molecules
had no knowledge about the simultaneity with
which the adaptive feedback processes between
them happened.

Nowadays, computers have reached enough speed
to simulate such simultaneous or parallel proc-
esses (although, as we know already from Net-
Logo, that parallelism is fake) in real-time.
Additionally, sciences like biology, neuro-
science, chemistry, psychology, system theory
and others have explored natural phenomena that
rest on such parallel processes. Infact, it
seems that all complex organizations or systems
use distributed parallel processing.
Another way of describing such processes is to
say that local information is computed simulta-
neously!
In order to embed design mechanisms and archi-
tectural concepts into their contextual sys-
tems, we explore mechanisms from other fi elds
and try to synthezise them with hitherto well
working methods of design. Thus, we might be
able - thanks to the capacity of computational
simulation - to adapt some architectural design
strategies to the underlying complexity of our
world.

The VBA AutoCad environment

Today we will demonstrate to you live how to
write a little program in Visual Basic for Ap-
plications. The application in that context is
AutoCad 2002. The difference between Visual
Basic and Visual Basic for Applications is that
VBA needs to be embedded in an application that
has a ‘front engine’ to output the compiled
code. VB on the other hand has its own inter-
face and output, which builds the compiled code
into stand alone applications.
We will be using VBA AutoCad so that we don’t
have to write our own graphic output interfac-
es, because we will be using the application’s,
here AutoCad. Therefore, you can just tell
the application to draw a cube and collect the
information in a data-structure. On the next
page, there is a little description diagram of
the AutoCad object.

In order for you to write an algorithm into VBA
AutoCad, the environment should be a little fa-
miliar to you:

1 - to make a new project, you need to open the
VBA manager (get in the Tools menu, Macro tab;
or simple type vbaman into the command line)
and chose New. A new ACADProject will appear,
which will be called Global1. Now press Visual
Basic Editor and you will fi nd yourself in the
editor/ compiler.

2 - one can write an algorithm directly into
the current drawing, a new sheet called This-
Drawing diplayed in the Project window on the
left, or insert a module to write code into.
We will write into modules since they can be
mixed and linked with other modules, classes
and forms to create larger projects. So, right-
click in the Project window and chose Insert a
Module. Here you will write your little program
of the day later.

f
o
r
m
_
s
c
r
i
p
t
.
s
e
s
s
i
o
n
s

011210 netlogo.CA

021910 netlogo.agents

032610 netlogo.react_diffuse

040911 vba.introduction

3 - before doing so, give a name to your
project by typing a name without spaces or num-
bers into the name fi eld of the Properties win-
dow on the left just underneath the Project
window.
To save your module you can simple save it in
the editor. But if you were to save it as an-
other, one has to go through the VBA Manager
again.

4 - later, once you have written the program we
wrote during the class, you will want to run
the project. First though, you will have to
compile your algorithm. Go the the Debug menu
and chose the fi rst tab called Compile ACAD-
Project. If no compile errors are found, you
can do two things:

 a) go back to AutoCad and type vbarun on
 the command line, which brings up a dia
 log where you can chose your project and
 then run it.
 b) just press Run in the editor. To see
 the program unfold in the AutoCad inter
 face though, you will need to make the
 editor really small fi rst, so as just to
 see the Run button.

5 - having run the algorithm and being gener-
ally happy about the outcome, you should Unload
your project in the VBA Manager. If you want
to access and run you project at a later stage
again, you will have to Load it through the VBA
Manager. One can load multiple projects.

TASK

Change the program and parameters. For other
objects to use instead of Box and Sphere, look
up the Developer Help in AutoCad. It is very
thorough, so you don’t have to buy a book!

VB(A) Editor

drivers/ libraries

classes/ objects

macros/ modules

AutoCad Application

 objects
 (- Thisdrawing
 - Modelspace
 - Paperspace
 - Drawing Entities
 - Utility...)

Properties Methods
(- Colour (- Create
 - Layer - Move
 - Coordinates - Rotate
 - Centroid...) - Delete)

f
o
r
m
_
s
c
r
i
p
t
.
s
e
s
s
i
o
n
s

011210 netlogo.CA

021910 netlogo.agents

032610 netlogo.react_diffuse

040911 vba.introduction

‘****************************** today’s line_walker program **************************

Sub main()

 Dim i As Integer
 Dim here(2) As Double, there(2) As Double
 Dim walker As AcadLine
 Dim node As Acad3DSolid

 there(0) = random(0, 25): there(1) = random(0, 25): there(2) = random(0, 25)

 For i = 0 To 50

 here(0) = there(0): here(1) = there(1): here(2) = there(2)
 there(0) = random(there(0) - 15, there(0) + 15)
 there(1) = random(there(1) - 15, there(1) + 15)
 there(2) = random(there(2) - 15, there(2) + 15)

 leng = random(3, 8): wid = random(3, 8): high = random(2, 10)

 Set walker = ThisDrawing.ModelSpace.AddLine(here, there)
 Set node = ThisDrawing.ModelSpace.AddBox(here, leng, wid, high)
 node.Rotate here, random(0, 360)
 node.Color = i

 ThisDrawing.Regen (acActiveViewport)
 ZoomExtents

 Next i

End Sub

Function random(low As Double, up As Double) As Double

 random = (up - low) * Rnd + low

End Function

