
fo
rm
_s
cr
ip
t.
wo
rk
sh
op

010610 netlogo.0610 netlogo.0610 netlogo.0610 netlogo.CA

021310 netlogo.10 netlogo.10 netlogo.10 netlogo.agents

2010 netlogo.10 netlogo.10 netlogo.10 netlogo.react_diffuse 03

Turing proposed the idea that two or more re-
acting chemicals in a diffusion would reach a acting chemicals in a diffusion would reach a
stable state and thus reveal a pattern. An-
drew Adamatzky in his introduction to drew Adamatzky in his introduction to reac-reac-
tion-diffusion models uses the example of the
grass fi re to explain the general ideas about
reaction diffusion.
Initially the idea is that you have a system
at rest, consisting of an excitable medium
– in this case burnable grass; after pertur-
bation the system moves in some phase space bation the system moves in some phase space
along a fi xed trajectory until it returns to
the fi xed point.the fi xed point.

• setting on fi re is a • setting on fi re is a perturbationperturbation action action
• a fi re front is an excitation front
• a burnt zone is the part of the medium • a burnt zone is the part of the medium
 in a refractory state
• growth of grass is the recovery of the
 substrate

The items in italics are technical terms de-The items in italics are technical terms de-
rived from chemistry, which we need not go
into here, but the point is that the proc-into here, but the point is that the proc-
ess consists of waves (or fronts) of excita-
tion which travel across the chemical and as tion which travel across the chemical and as
they do so, where they meet they stop. So if
you chuck some matches into an area of dried you chuck some matches into an area of dried
grass, where the matches land becomes the
centre of a circle (if there is no wind!) of
burnt grass. This will go on until there is
no more grass to burn, or if the front of
burning grass meets another front. The fact burning grass meets another front. The fact
that once the grass is burnt it can’t imme-
diately be reignited is the fact behind the diately be reignited is the fact behind the
bushmen’s trick of stopping a fi re by starting
another one ahead of the front.another one ahead of the front.

This fi nal project in our 3 lessons on netlogo This fi nal project in our 3 lessons on netlogo
is a combination of the two we have looked
at, the cellular automata (magic carpet/life
game) and the turtles/agents/particles the we

looked at last week.

In today’s project we are building on the re-
pel procedure that we have already discussed, pel procedure that we have already discussed,
where a set of turtles do the following:

 1 - fi nd nearest turtle
 2 - back off by repel-strength

We have observed that once the turtles have
quietened down they are all the same distance quietened down they are all the same distance
from each other, and as a consequence repre-
sent a triangular lattice. If you look at sent a triangular lattice. If you look at
the distribution of the points you can see
that that

 1 - they can all be seen to lie on this 1 - they can all be seen to lie on this
 triangular grid
 2 - they can all be seen to lie at the
 centre of a small region bounded by
 their immediate neighbour’s regions

The technical term for developing these re-
gions is delaunay triangulation/ voronoi gions is delaunay triangulation/ voronoi
diagram, and there are many methods of con-
structing such things (we can show you a ver-structing such things (we can show you a ver-
sion written in VBA later on) which rely on
complicated mathematical formulae and con-complicated mathematical formulae and con-
structive geometry, but today we will look
at how we can use these points to initi-
ate a reaction diffusion mechanism so as to
show these regions. We will look at how to do
it the simplest possible way – the way na-it the simplest possible way – the way na-
ture does it in the cracks in dried mud and
the other material methods such as Frei Otto the other material methods such as Frei Otto
looks at (and we will next week in the soap-
fi lm workshop).fi lm workshop).

The program works by using the patches (like The program works by using the patches (like
in the magic sponge) to do the diffusion. At
the beginning the patches are all at zero
– growing grass as it were.

Alan Turing, 1952,
“The Chemical Basis of
Morphogenesis”, phil.
Trans R Soc B, 237 37-
72 (transactions of the
royal society)

fo
rm
_s
cr
ip
t.
wo
rk
sh
op

010610 netlogo.0610 netlogo.0610 netlogo.0610 netlogo.CA

021310 netlogo.10 netlogo.10 netlogo.10 netlogo.agents

2010 netlogo.10 netlogo.10 netlogo.10 netlogo.react_diffuse 03

to leakto leakto leakto leakto leak
 without-interruption ;use patchcolour to set patches own variables without-interruption ;use patchcolour to set patches own variables
 [[[[[
 ask patches [if not boundary [checkdiffuse]] ask patches [if not boundary [checkdiffuse]] ask patches [if not boundary [checkdiffuse]]
]]]
 if recording [movie-grab-graphics] if recording [movie-grab-graphics] if recording [movie-grab-graphics]
 without-interruption ;;use patches own to set patch colour without-interruption ;;use patches own to set patch colour without-interruption ;;use patches own to set patch colour
 [[[[[
 ask patches [ifelse boundary [set pcolor white set s1 0] ask patches [ifelse boundary [set pcolor white set s1 0] ask patches [ifelse boundary [set pcolor white set s1 0]
 [if s1 > 0 [set pcolor s1]] [if s1 > 0 [set pcolor s1]] [if s1 > 0 [set pcolor s1]] [if s1 > 0 [set pcolor s1]] [if s1 > 0 [set pcolor s1]]
]
]]]
 end

 to checkdiffuse to checkdiffuse to checkdiffuse
 if pcolor = 0 ;this patch is currently blank if pcolor = 0 ;this patch is currently blank if pcolor = 0 ;this patch is currently blank if pcolor = 0 ;this patch is currently blank if pcolor = 0 ;this patch is currently blank

 [[[
 set s1 sum values-from neighbors3d [pcolor] set s1 sum values-from neighbors3d [pcolor] set s1 sum values-from neighbors3d [pcolor] set s1 sum values-from neighbors3d [pcolor] set s1 sum values-from neighbors3d [pcolor]
 set s2 count neighbors3d with [pcolor > 0] set s2 count neighbors3d with [pcolor > 0] set s2 count neighbors3d with [pcolor > 0]
 if s2 > 0 ; any coloured patches in the neighbourhood ? if s2 > 0 ; any coloured patches in the neighbourhood ? if s2 > 0 ; any coloured patches in the neighbourhood ? if s2 > 0 ; any coloured patches in the neighbourhood ? if s2 > 0 ; any coloured patches in the neighbourhood ?
 [
 ifelse (int(s1 / s2) * s2) = s1 ;check all colours are the same ? ifelse (int(s1 / s2) * s2) = s1 ;check all colours are the same ? ifelse (int(s1 / s2) * s2) = s1 ;check all colours are the same ? ifelse (int(s1 / s2) * s2) = s1 ;check all colours are the same ? ifelse (int(s1 / s2) * s2) = s1 ;check all colours are the same ?
 [set s1 (s1 / s2)] ;then just turn the same colour [set s1 (s1 / s2)] ;then just turn the same colour [set s1 (s1 / s2)] ;then just turn the same colour
 [set boundary true] ;but if some are different be a boundary [set boundary true] ;but if some are different be a boundary [set boundary true] ;but if some are different be a boundary [set boundary true] ;but if some are different be a boundary [set boundary true] ;but if some are different be a boundary
]]]

]]]

 end end end

How it worksHow it works

We need a way of initiating the reaction dif-We need a way of initiating the reaction dif-
fusion mechanism (dropping the match some-
where as it were), and we do this by getting
the turtles to colour in the patch they are
standing on. Using ‘stamp’ will do this, but
if we only do that the patches stamped on
will all be the same colour. For ease of pro-
gramming we need the initiators to be differ-gramming we need the initiators to be differ-
ent colours so we add ‘who’ (turtle’s ID) to
the stamp to get different colours for every the stamp to get different colours for every
turtle (because they all have different ids).
Then we tell them to die because we don’t Then we tell them to die because we don’t
need them any more - ‘die’.

The algorithm

The general idea is that any empty patch
will change to the colour of any neighbour-
ing patch that isn’t zero. That will work to ing patch that isn’t zero. That will work to
diffuse the initial coloured patch (where the
turtle stamped) but we don’t have any way to turtle stamped) but we don’t have any way to
stop it. We want to stop the diffusion when
one colour meets another different colour, one colour meets another different colour,
and we will set this patch to be a ‘boundary’
patch. In the ‘checkdiffuse’ procedure below patch. In the ‘checkdiffuse’ procedure below
we set patches to be either the colour of the
general diffusion or if there are 2 or more
colours in the neighbourhood we set it to be
a boundary. This works by the slightly devi-
ous method of checking how many neighbours ous method of checking how many neighbours
are coloured at all (s1 =count neighbours
with …) and also summing all the (possibly with …) and also summing all the (possibly
different) colour values in the neighbourhood
(s2 = sum values-from). If all the colours (s2 = sum values-from). If all the colours
are the same then taking the whole number
value of the division of howmany(s1) by the value of the division of howmany(s1) by the
howmuch (s2) and comparing that with the real
result we can infer whether all the colours
are the same .

fo
rm
_s
cr
ip
t.
wo
rk
sh
op

010610 netlogo.0610 netlogo.0610 netlogo.0610 netlogo.CA

021310 netlogo.10 netlogo.10 netlogo.10 netlogo.agents

2010 netlogo.10 netlogo.10 netlogo.10 netlogo.react_diffuse 03

The ‘leak’ procedure calls ‘checkdiffuse’ and
then colours them in appropriately, white for then colours them in appropriately, white for
boundary cells and the diffusing colour for
the others. the others.

In the resulting pattern you will see that
the white cells form lines between the origi-
nal turtle points. The geometry is rather
heavily infl uenced by the orthogonality of the
patches grid, so we don’t see good hexagons,
but only 0, 45 and 90 degree lines. There is but only 0, 45 and 90 degree lines. There is
another version of this program which uses
the ‘diffuse’ command in netlogo, which re-the ‘diffuse’ command in netlogo, which re-
sults in slightly better tilings, but with
gaps because the diffusion is diffi cult to gaps because the diffusion is diffi cult to
control.

Tasks

1 - during today’s workshop

You should combine the two programmes: 1)
circles from last week with repel and 2) this circles from last week with repel and 2) this
weeks reaction-diffusion, into one.
After that you should use this program with After that you should use this program with
your multiple strength repulse procedures so
as to create large and small cells in your as to create large and small cells in your
emergent voronoi. Don’t forget to RECORD your
results for Fridays DTP session.

2 - assignment for next week

Collect images from the web of natural/ so-
cial examples of these reaction-diffusion cial examples of these reaction-diffusion
processes and emergent patterns through forc-
es.es.
Come up with a program of your own that com-
bines the last three workshops scripts - bines the last three workshops scripts -
handed-out and written by yourselves. Keep it
simple and look for the graphic effect rather
than heavy programming!

mud crack patternmud crack pattern

Images on the right show the effect of visualis-
ing different concentrations of chemical as sol-
id.id.

fo
rm
_s
cr
ip
t.
wo
rk
sh
op

010610 netlogo.0610 netlogo.0610 netlogo.0610 netlogo.CA

021310 netlogo.10 netlogo.10 netlogo.10 netlogo.agents

2010 netlogo.10 netlogo.10 netlogo.10 netlogo.react_diffuse 03

fo
rm
_s
cr
ip
t.
wo
rk
sh
op

010610 netlogo.0610 netlogo.0610 netlogo.0610 netlogo.CA

021310 netlogo.10 netlogo.10 netlogo.10 netlogo.agents

2010 netlogo.10 netlogo.10 netlogo.10 netlogo.react_diffuse 03

fo
rm
_s
cr
ip
t.
wo
rk
sh
op

010610 netlogo.0610 netlogo.0610 netlogo.0610 netlogo.CA

021310 netlogo.10 netlogo.10 netlogo.10 netlogo.agents

2010 netlogo.10 netlogo.10 netlogo.10 netlogo.react_diffuse 03

fo
rm
_s
cr
ip
t.
wo
rk
sh
op

010610 netlogo.0610 netlogo.0610 netlogo.0610 netlogo.CA

021310 netlogo.10 netlogo.10 netlogo.10 netlogo.agents

2010 netlogo.10 netlogo.10 netlogo.10 netlogo.react_diffuse 03

